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Abstract

The problem of nonparametric estimation of a bivariate survivorship

function with doubly censored data is considered. A self-consistent esti-

inator is developed by first~~-reducing~~the problem to that of estimation in

a singly and right censored situation . This estimator is shown to satis-

fy a likelihood equation, and its uniqueness is investigated. The results

obtained naturally parallel those obtained by— eainpbe-]d -(1~~9~~in the sing-

ly censored case
\I
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• Nonparaznetric Estimation of a Bivariate

Survivorship Function with Doubly

• Censored Data

1. Introduction and summary. In this article we consider the nonpara-

metric estimation of a bivariate survivorship function when data may be

both left and right censored. Specifically, let (T11 ,T25), j = 1,. ..,n,

be n pairs of true lifel~ngths where some of the T1~ ’s are left cen-

sored and some right censored. Thus, not all (T1 .,T2.) are exactly

observable. For each j  (1 < j  < n) and for i = 1,2 , we assume that

there are limits of observation L.. and U. . (L.. < U..) which are
13 13 13 — 13

either random variables independent of each other and (T1.~T2~) or are

fixed constants. The recorded information is

X~ . = max [inin(T.~~U..). ~~~~ 
i 1,2, j = 1 ,.. .,n

Also, for each j = 1,... ,n and i = 1,2, it is known whether X1~ =

(i.e. T... <L.. and T.. is left censored or a “late entry’), or

X.. = U.. (i.e. T.. > U.. and T.. is right censored or a “loss”),
13 13 13 13 13

or X.. = T.. (i.e. L.. < T.. < U.. and T.. is a “death”).
13 13 13 13 — 13 13

Recently Campbell (1979) considered the problem when observations are

randomly and right censored. He developed a “self-consistent” (SC) non-

parametric estimator and showed, among other things, that the SC satisfied

a nonparametric likelihood equation and was unique up to the final censored

values in any dimension . A similar SC estimator was developed and studied

by Korwar and Dahiya (1979). Here we extend Campbell’s results to the

This research was supported by a research contract from the U.S. Air Force
Office of Scientific Research, AFOSR , under Contract #F49620-79-C-O10S.
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situation of doubly censored data. Earlier, Turnbull (1974) considered

the univariate situation, and used an ingenious approach to “reduce” the

doubly censored situation to the right censored one for which the Kaplan-

Meir (KL) (1958) estimator was readily applicable. In extending Campbell’s

results here we use the very same approach of Turnbull , though modified ,

of “reducing” the doubly censored situation to that of the right and singly

censored one.

Assume, then, that there is, for each component of the bivariate variable ,

a natural discrete time t. = 0 < t. < ... < t. , i = 1,2. (This is an10 ii im.
1

appropriate assumption to make if observations are made only at discrete

times.) Alternatively, we might assume that they are grouped and for each

rectangle (t1 .1 ,t1
.) x (t2.1 ,

t~ .] we have the following information

available:

= # of pairs (Tlk,T2k) such that t1~_ 1< Tlk $.~ 
tl i

and t2~_ 1 < T~~ ~ t~~ (“double deaths”);

ci. . = # of pairs (Tlk,T2k) such that Tlk 
> T

1~ 
and

< T2k ~~. 
t2~ (“loss in the first component and death

in the second”);

= # of pairs (Tlk,T2k) such that t1~~1 
< Tik 

< t
1~

and T2k 
> t2. (“death in the first component and loss

in the second”);

= # of pairs (Tlk,T2k) such that Tlk 
> t

1~ 
and T2k > t2~

(“double losses”);

= # of pairs (Tlk,T2k) such that Tik 
< t1~ and T2k < t~~

(“double late entries”);

~

•-
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= # of pairs (Tlk,T2k) such that Tik 
> t

1~ 
and T2k < t2.

(“loss in the first component and late entry for the second”);

= # of pairs (Tlk,T2k) such that T
ik 

< t1. and T
2k 

> t2~

(“late entry for the first component and loss in the second”);

= # of pairs (Tlk,T2k) such that t
1~~1 

< T
1~ ~ 

t~~ and

T2k < t2~ (“death in the first component and late entry in

the second”); and

;i~~. = # of pairs (Tlk,T2k) such that T
ik 

< t1~ 
and

< T
2~ 

< t2. (“late entry for the first component

and death in the second”).

As in Turnbull (1974), we assume that each of the late entries or

or p~~.) in the first (second) component occurs at the end of

the interval Ct1. 1,t1.]((t2. 1,t2.]); 
that each of the double late

entries (double losses X1 1~~~1) occurs at the right hand top (left

hand botton) corner of the rectangle (t
1~~1,

t1~] ~
( (t2~~11 t2~}. 

Finally,

we also assume that each of the or 
~~ (B~~ or ~i~~~) losses

in the first (second) component occurs at the beginning of the interval

(t1. 1, t1~ J ((t
23 1~ t2~

]). Alternative assumptions are also possible which

we do not pursue here.

We desire to estimate F.. = P[T1 > t1.,T2 
> t

2.], 
I = 0,..

I = 0,...,~n2

2. The Self-consistent estimator. We first reduce the problem to that in

which there is only right censoring. To this end, consider first the

double late entries at (t1.,t2.). Of these, the expected number of double

—‘-—=~~~~~~~~~~~ =~~~—~-—-- —
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deaths in the rectangle(t11 , 1,t1.jx (t2 . , 1,t2.’), for i’ < i, j ’  < j ,

is estimated by i4~ k~~1 where is an estimate of

< T
1 

< t
1~ ,,t2 ~ ~ 

< T
2 

< t
2
j T1 < t1 1 , T

2 
< t2.] = 

~i’j’
1 
~ij’

where ~~~~~~~~~~ . , - F .  . - F . . +F. . ,p.. 1 - F
1 3 1 —l ,j —l i ’—l ,j’ 1 ’,3 ’— l 1 ’ ,3 ’ 13 0,j

- F1 0  + F
1~~. and F

1~ 
= P(T

1 
> t111T2 

> t
2~~
) . Similarly, of the

Single late entries, the expected number of double deaths in the

rectangle (t
1 1..1,t11J x (t

2~~~..1~
t
2~ ,] is estimated by p

~
. k~ 1

(u~~ k~~)

where k~ .(k~ .) is an estimate of P[t1 1  < T1 
< t1.,t~ .,1 < T

2 ~ t~~~ 1

< T~< t
1j •~ 12 

>t2j~ = ~.~~/(R~0 
— R.~) (P[t 1 1 , 1 < T ~ < t

1~~, t2 . 1

< T~ < t2. T
1 

> t1~ ,
t
2~~~1 

< T
2 ~ t2~] 

= 
~~ / ( Q~ 

- Q1~))~ where j~~~i’j~
• is defined above and R.. = F. . - F. . ( Q . .  = F.. - F..). Of the

13 i—l ,j 13 13 ij—l 13

single late entries, the expected number of deaths in the rectangle

x (t~ ,~ ) is estimated by p k ~ .(p~ .k~.) where

is an estimate of P[t11, 1
< T

1 
< t

1~ ,, T2 
> t. I T1 < t1., T1 > t2.] =

R1,~~/(F 0~ 
— F

1~~
) (P[T1 

> t1 t2y1 
< T~ < t 2 j , I  T1 > t1., T2 < t2j j =

Q. .,/(F . 
0 

- F. .)). Now, consider the “reduced” singly, right censored
13 1, 1,3

problem with

• = + 

~~~~~~ ~~ 
ai 1

~i’~ ~~,~~ 4j’ ~i j~~~ i,O 
- ‘~i,~~’) 

+

j ‘>j
(2.1)

= a.. + 

J
:
~
:

E~) ~~ ~~~~~~~~~ ~~~~ 

= + ~~~~ R~~/(F~~ - F~~~)

where the caret over a proba?,ility denotes an estimate of the

• -•-•~~~, -•-•—
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corresponding probability. From Campbell (1979) a nonparametric estimator

Fj~ of F
1~~ 

= P[T1 > t1.,T2 > t2,] :atisfies the self-consistency equation

nF!. =N.. + E ct’ ~~~ & +  
~ B’13 13 k9~ Q~~ k>i k9~

k<i

+ , 1
~tnax(i,k),max(i ,)~~

k czi 
Xk2. 

F
k~or

(2.2) N.. = E 6
k~~ 

+ + E + 
~ 

A~~~
k>i,Z>j k>i ,~ >j k>i ,Q>j k>i , 2~~ j

Following Efron (1967) we say that the estimates ~F..} are self-consistent if

F!. = F.. . Thus the self-consistent estimates F.. satisfy13 13 13

( 2 . 3 )  n F . .  = N . .  + ~ + ~ + 
~~~. ~~~~~~~~~ 

Fmax(ik~,max(j,~)
• kL kR.. k<i Fk~k<i or £<j

where (ct~~, 6~~ , X~~) and N . .  are given by (2.1) and (2.2) respectively,

and where Q . .  = F. - F . . and R . .  = F . . - F . .
13 i , l—l  13 13 1—1 ,3 13

• An obvious iterat ive procedure to compute the F
e ’s is as foll ows :

( I) Start with the empirical distribution function F~~ = N 1~ fn

as the initial estimators .

(2) Form ô ! . , c t ! . ,~~!. and X ! . ,  as descr ibed above , using {F?.}
13 13 13 13 13

(3) Obtain improved estimates {F~~} by using

= N  + Z a’ .!&.~~~ Z B ’i j  1) ~~
>
. k~. ~O k2..

k9..k<i

A
R 

F ( kJ (~i,&~)

k<i
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(4) Go to step (2) with {F~~ } in place of (F? .) etc .

(5) Stop when the requiremen ts on the accuracy are met . Convergence could
be faster if we started with the Campbell estimates {~99} satisf ying (2.3)
wi thou t the dashes .

• 3. 
~~pperties of the SC estimator. In this section we state and prove

some important properties of the self-consistent estimates { P.. ) (2.3).
These properties natura lly para l lel properties for Campbell’s (1979) estima tes
for the right censoring only situation .

The likelihood function L is

rn ,m 1 2 3 4
(3.1) L 

i~~ ,j=l ’~ 

Q~~ R1~~ ~~~~~~~~~~ - F. .) 13 (F0 .  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Q ) 13

and the likel ihood equation obtained by partially differentiating £nL with
respect to F.. and setting it to zero is

a~nL = - j_
~~ ~~~~~~~~~

. 

+ ~~+1~i~~ + + -SF .. A .. A . . A. . A . . F.. Q . .  Q. . R..13 13 1,3+1 i+1,j ‘+l ,j+l 13 13 i,j+l 13

1 2 3 4 4 5
+ ~4!

1, J + - ________ - 

p 
+ - 

11i + 1, j  
+ _________

~ij 
F10-F~ ~~~~~ 

R1o
_R
~ 

R~+ 10 -R~~1~~ Q~j -Q~

- 

3j~j+l

1 2 4 4aLnL 
— .~1L 

~i÷l l _
~
j — .~~i + 

Pu ~i j  u
i + 1 ,j 

— 0
v 

F - F  R - R  R R
~~~~~~~ il i+1,l ‘<i i ij  iO i j  iO ij i+1,0 i+l,j

~3.2’) 
1 3 5 5

~~~ ~~~~~~~~~~~~~~~~~~~~ 
+ 

~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~ 
+~~~~~lJ~~~~~

Q 
= 0

Oj 13 1,3÷1 lj 13 Oj 13 Oj 13 0,~7+1 1 .1+1
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• We are now ready to prove

Theorem 1: Any self-consistent solution {F..} of (2.3) will also

satisfy the likelihood equation (3.2) with (F..,Q.., . .) in place of

(F.. , Q. .  ,R..)

Proof: Recast , using (2.1), the likelihood equation (3.2). This is

easil y seen to be

6!. 6! . 6: . 6! . A !. ce! . cx! . ~ ! . ~ !13 - 
1, 3 + 1  

- 
i+l .:i 

+ ~~~~~~~~ + _.~U. - _JJ. + 
1,3+1 

- + 
i+1 , i 

=A.  A. . •~~~. • A. . F.  . Q. . Q. . R . .1 1,3+ 1 1+ 1 ,3 i+ l , i + 1 13 11  i , j + l  i i  : + 1  .~~~

6 ! 6 !
i i  i+l , l i i

, andA. A . Q.
i i  ~~~~ i i

6 ’ 6 ’
— ~. 

1, j+ l  
+ = 0A . A .  R .

13 l , j + l  13

The res t fol low s from Theorem 2 of Campbell ( 1979) .  [1

Turning to the existence and uniqueness of a solution of (2 .3) ,  ~ne

m i g h t  ask whether  there exists at a l l  a solution ( F . . )  of (2 . 3~ ~nd i f
.L 1

so ~s it uni que? The difficulties are similar to those encountered in the

singly and right censored cnse. For a discussion and a conjecture about

existence , see Campbell (1979). The following theorem is aimed at the

queness question :

2
Theoren’ 2 : The matrix 

~~~~ 
-~~~~~ IlL ) is nonnegative defi n i te .

ij  k2.

Proof: Wr i te  the l ikel ihood (3.1)  as

L = L
1 

L
2

_ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  J
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where

• 6 . .  A . .  a . .  B . .
• L = ~~~~ A .~~

3 F .~~
3 Q.~~

3 R.~
3

1 13 13 13 13

and

2 3 4 5
(3.3) L2 = 

~~ 

~~~~~ (F .0 -F . .  )13 (F0.-F..)’3 (R.0~R.~)’J (Q~~. -Q.~~) ’
~

Now , Campbell (1979) has shown (his Theorem 3) that the matrix ~ ~F ~Fij  k9~
is non-negative def ini te .  Thus it suffices to show that ~~

ii k9

also is. From (3.3) and the definitions of p . . ,  Q .  and 
~~~ 

letting

- 

:.

M

:: :: :+t:: 

+ m~ . + m7 . + m~~ . ,
( i j) (i ~j )  13 13 13 13 i+l ,j  13 1,3+1

M (i j) ( i l j) = - ~~~ M
(ij)(j j l) 

= - ~~~ M(.i)(k~) 
= ° if Ii -kI+~j-~ I>2 ,

4 1 2 4 4 4M . .  . = i n . .  M . . = -(m. . +m. . +m. . +m. .), M .. . = m.( i j ) ( i — l , 0) 13 ’ (13)(10) 13 13 13 1+1 ,3 (ij)(i+1 ,0) i+l ,j

= m~ ., ~~~~~~~ = ~~~~~~~~~~~~~~~~~~~~ M(uj)(o j+l) =

M(jj)(ko) 
= 0 if l i - k i  > 2, M(..)(ot) = 0 if I j — ~I > 2

= mij~
mi j~

m i j~
mi j+l’ M (0~ )(0 J 1) = -

M(Oj)(io) = ~~~ M(Ø~)(0~) = 0 if k-il > 2,

M(io)(io) = ~~~~~~~~~~~~~~~ j
~ 

M 0)~~~10) = - m~~ M(~0) (kG) = 0 if f k - i f  > 2

TEi ~ P A ;  is ~c~i ~U~~.JTy PR OTI CABLE
I k ~~~~ ~~~

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • ••• • - • • • •~~~~ • • • • - • •• •• •-••—-~—-•- ~~~~
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where

m~ . = ~~~~~~~~~~~ m~ . = ~~~~~~~~~~~~ - F
15

) 2 , m~~. = p~~
5

/ (F 0.  - F
~5
)2

m~ . = p~~ . / ( R . 0  - R..)2, m~~ u~./ ( Q~. - Q ) 2

Note that M(as well as the matrices to follow) is m X m , wher e m = m 1m 2 + ni 1 ÷ in
2

Now decompose M as follows : Let A
15 be the matrix with l ’ s at (Oj)(Oj),

• (Oj) (iO), (iO) (05), (iO) (iO), (ij) (15), — l’s at (Oj) (ij),(iO) (ij),(ij) (iO),

• and O’ s everywhere else. Let A~5 
be the matrix with l’s at (iO)(iO),

( i j ) ( i j ) , — l ’ s at (iO)(ij), ( ij ) ( i0 )  and 0’s everywhere else. Let

• be the Matrix with l’s at (Oj ) (Oj) , (ij)(ij), — l’s at ( 0j ) ( ij ) ,  ( i j ,O j ) ,

and 0’ s everywhere else. Let A~ 5 
be the matrix with l’s at (0,j-l)(0,j-l),

(0,5—1) (ij), (05) ((°i) ~(0J ) (i , j — 1 )  , (i , j— 1)  (Oj ) , (i , j — l )  (i , j — l )  , (0,j—l) (ij)

(ij) (ii), — i’ s at (0,5—1) (Oj), (0,j—l) (i,j—l), (05) (0,5—1), (O~j) (ij),

(i,j—1) (0,j—l), (i,j—1)(ij), (ij)(Oj), (ij)(i,j—l), and 0’s everywhere else.

Finally, let A~. be the matrix with l’s at (i—1 ,0)(i-l ,0), (i-l ,0)(i,j),

(iO)(iO), (iO)(i—1 ,j), (i—l ,j)(iO), (i—l ,j)(i—l ,j), (ij)(i—l ,0),(ij)(ij), — l’s

at (i—1 ,0)(iO), (i—l ,0)(i—l ,j), (iO)(i—1 ,0), (iO)(ij), (i—1 ,j)(i—l ,0), (i—l ,j)(ij),

(ij)(iO), (ij)(i-1 ,j), and 0’s everywhere else. It is easily verified that

in2 in1 5 k k kM = Z E ~ in .. A.. . Since p. . ‘s are nonnegative numbers, the proof
j=1 i=1 k=l 13 13 13

will be complete if we show that each A~5 
is nonnegative definite.

and A~5 
are obviously nonnegative definite. The highest order nontrivial

principal minor of A~5 
is a third order determinant with two identical rows,

all the second order principal minors of this determinant vanish; and the

main diagonal has l’s on it. Hence A~5 
is also nonnegative definite.

- •— - —~~ . • • ~~~~ •~~~~~~~~=• - -  t.•-_ . , - • - •  ~~~~
•—• ,,

~~~~~~
-,• - - •—-— •- • — -~~~~~~
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4 5F in a l ly , the highest order nontrivial pr lnclpa l minor of A
15 ( A . . )  is a

fourth order determinant which has two pairs of identical rows. Hence,
itself and all its principal minors of order three vanish. The second
order principal minors of this determinant all vanish, and the entries on

the main diagonal are a l l  l ’ s . 0
Theorem 2 implies that the likelihood L (3.1) is convex in the F~ . ’s.
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